
AD-A242 076
, .-

NASA Contractor Report 187629

ICASE Report No. 91-75

ICASE
AN APPROXIMATE RIEMANN SOLVER FOR
HYPERVELOCITY FLOWS

P. A. Jacobs

Contract No. NAS1-18605
September 1991

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

/
Operated by the Universities Space Research Association

91-14334
I i, l IIII II l Ii

Nationtt Apronattirs and
Space Administration
Lxngley Regerch Center
Htmpton,Virqinin 23f)5-5225 9 1 0 28 1 2 5
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ABSTRACT

We describe an approximate Riemann solver for the computation of hypervelocity flows

in which there are strong shocks and viscous interactions. The scheme has three stages,

the first of which computes the intermediate states assuming isentropic waves. A second

stage, based on the strong shock relations, may then be invoked if the pressure jump across

either wave is large. The third stage interpolates the interface state from the two initial

states and the intermediate states. The solver is used as part of a finite-volume code and is

demonstrated on two test cases. The first is a high Mach number flow over a sphere while

the second is a flow over a slender cone with an adiabatic boundary layer. In both cases the

solver performs well.
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Nomenclature, Units

a local speed of sound, m/s
E total energy (internal + kinetic), J/kg
e specific internal energy, J/kg
h specific enthalpy, J/kg
Al Mach number
P pressure, Pa
Pr Prandtl number, (Cpil/k)

R gas constant, J/kg/K
Re Reynolds number
T temperature, A
t :time, s
U Riemann invariant
u x-component of velocity, rn/s
v y-component of velocity, m/s
ws wave speed used in the Riemann solver
x x-coordinatc, rn
y y-coordinate, rn
Z intermediate variable
a weighting function
p density, kg/rn 3

-j :ratio of specific heats
y :coefficient of viscosity, Pa.s

Superscripts
* :intermediate states for the Riemann solver

/locally tangent to the cone surface

Subscripts
MIN minimum allowable value
e boundary-layer edge condition
x,y cartesian components
L, R left state, right state

m nm mn~ n n mlm m I



1 Introduction

In recent years the proliferation of relatively fast computers has popularized the direct cal-

culation of viscous, compressible flows in a time-accurate manner. In some situations, such

as the transient hypersonic flow over a model in a shock-tunnel, numerical simulation is the

only way to extract detailed information about the flow field. Such computations are very

demanding as there are both strong shocks and rarefactions and strong viscous interactions.

This note describes a robust Riemann solver for use in transient hypervelocity flow calcu-

lations. The full code [1] is based on a cell-centred time-dependent finite-volume formulation

of the axisynimetric Navier-Stokes equations in which the governing equations are expressed

in integral form over arbitrary quadrilateral cells. The time rate of change of conserved

quantities in each cell is specified as a summation of the fluxes through the cell interfaces.

The inviscid components of the fluxes are computed with the approximate Riemann solver

while the viscous fluxes are calculated by application of the divergence theorem. At each

time step, we first interpolate the flow state (consisting of a set of values for p, u, v, e, P, a)

to either side of each interface at the start of the time step and then apply a Riemann solver

to estimate the flow state at the interface during the time step. Note that the solver is

applied in a locally rotated frame of reference in which the u-velocity is normal to the cell

interface.

There are a number of Riemann solvers that can be used including "exact" iterative

schemes [2] and approximate (noniterative) schemes [3, 4]. Th" approximate schemes are

generally less computationally expensive than the iterative schemes and, because the Rie-

mann solver coinsumes a large fraction of the total computational effort, an approximate

scheme is favoured. Although the Roe-type solver is popular because it is relatively fast,

there are situations such as the double-Mach-reflection case [5] and flow over a sphere [6]

where it may produce spurious results. The Osher-type solver [4] is considered to be fairly

robust and free of adjustable parameters, however, we have experienced some difficulty in

applying it to flows with very strong shocks.

Iere. we take a middle road between the fully iterative solvers and the single-step ap-

proximate solver andlI at the cost of some computational expense, produce an approximate

solver which is it liable in extreme flow situations and is vectorizable with current compilers

for vector conirputer's.

2



2 Approximate Riemann Solver

The current solver is a 3-stage approximate Riemann solver in which the first stage computes

the intermediate pressure and velocity assuming isentropic wave interaction. A second stage,

based oil the strong-shock relations, may be invoked to improve the first-stage estimate if

the pressure jump across either wave are sufficiently large. In practice, this modification

has been required only in extreme conditions such as those found in the bluff-body test case

(Section 3.1). The final stage is to select/interpolate the interface state (p, u, v, e, P, etc)

from the set of left, right and intermediate states. If stage 2 (strong shock modification) is

not invoked, the solver is much like Osher's approximate Riemann solver [4].

STAGE 1. The first stage of the Riemann solver assumes that a spatially constant left state

(subscript L) and right state (subscript R) interact through a pair of finite-amplitude (and

isentropic) compression or rarefaction waves. Perfect gas relations ([7] cited in [2]) are used

to obtain the intermediate states (L*, R-) in the gas after the passage of left-moving and

right-moving waves, respectively. The expressions implemented in the code are

Pi P> P- PL ( -- )(UL 2R)2 -/(--) (1)2aL(1 + Z

and
UL Z + UR (2)

where the lRiearinn invariants are

L L + 2 _._ I

UR =(3)

and the intermediate variable Z is given by

Z=aR (P1)(0-1)/(21)

Zz - - (4)
aI [. PR'

Note that these expressions involve the power operator which is computationally expensive.

For a limited range of base and exponent, the standard powecr function is replaced by the

approximate expansion [1]. In the exceptional situation o; (UL - UR) < 0, we assume that

a (near) vacuum has formed at the cell interface and set all of the interface quantities to

minimum values.

STAGE 2: If the pressure jump across eithe wave is large (say, a factor of 10), then the

guess for the iit.Iiniediate pressure is mod-fied using the strong shock relations.
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If P" > 10 PL and P' > 10 PF then both waves are taken to be strong shock waves and

the intermediate pressure and ,elocity can be determined directly as

- PL[(UL -UR) (5)

and
_ =/P UL + v'R UR (6)

If P* is greater than PL or PR (but not both), the stage-1 estimate for P* can be improved

with two Newton-Raphson steps of the form

L,(dFV'
P +1  P- (7)

where

= u(Pj) - u(P,,) (8)

and

(f = L{ L-2a- (p.) 2 P*<IOPL (9V' 2 a I '9 )
U Y-1 2P* ) 1/2 P.*>1 P 9

UL- (PL(-Y+I) ' > 10 PL

UR + 2 a& (L*) 2, p P<1OpR
U '-1 PR ' - (10)

R_ 2P) 1/2
uR + (PR(-Y+1)J P* > 10 PR

The strong-shock expressions used in (9), (10) can be obtained from the normal shock ex-

pressions in [8] by taking the limits as the pressure jump becomes large. During the update,

we ensure that P* >_ PAIIN where PAIIN is some small value. After updating P*, the inter-

mediate velocity is evaluated using the relevant strong-shock relation from (9) or (10).

STAGE 3: Now that we have computed the pressure and velocity in the intermediate regions

behind the waves, the other intermediate flow properties may be evaluated. The interface

conditions used in the inviscid flux vector can then be selected or interpolated from the 4

flow states using the logic shown in Fig. 1. Note that although only the left-moving wave is

discussed below, a similar procedure is used to obtain the flow state behind the right-moving

wave.

If the pressure rises across the left-moving wave (i.e. P* > PL), the left wave is assumed

to be a shock and density is obtained from the Rankine-Hugoniot relation as

P(_ + )P* + (-t- 1)PL
P + l)PL + (-Y - )*

L-PL --Y +1)PL-( 1)P (11)
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The specific internal energy is obtained from the equation of state as

L- _ (12)

and estimates for the local speed of sound (for later use in the interpolation of the interface

properties) are

a = /(y-1)e;. (13)

The velocity of the wave (relative to the initial left state) is given by

2PL PL

where WSL is the velocity of the wave relative to the cell boundaries.

If the pressure falls across the left-moving wave (i.e. P* < PL), the isentropic-wave

relations are used to obtain the intermediate properties. The local speed of sound is obtained

from the Riemann invariant as

a L (UL-j)(7--1)/2 , (15)

while the specific internal energy is obtained from the sound-speed relation as

" (a*)2 (16)

- - 1 )' "

The density is obtained from the equation of state as

LP = ( 1(17)

and the velocity of the leading-edge of the wave (relative to the initial left state) is given by

UL - WSL = aL. (18)

3 Test Cases

3.1 High Mach Number Flow around a Sphere.

The robustness of the code is demonstrated by computing a Mach 60 flow over a 7.5mm

radius sphere with a domain consisting of a 60 x 60 mesh of cells. The y = 0 boundary .is

the symmetry line (and stagnation line) while a tangency condition is applied at the surface

of the sphere. Free-stream conditions of

p =0.5097 x 10- 2 kg/rn3 , P =427.1 Pa, e = 2.095 x 10 J/kg,
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a 20600 rn/s, V 0, Alnommal 60.1

are applied to the curved inflow boundary, the shape of which is derived from the shock-

position correlations in [91. Flow conditions at the outflow boundary are obtained by zero-

order (constant) extrapolation. Initial conditions throughout the domain are set to

p = 0.5097 x 10 -
2 kg/r 3 , P = 427.1 Pa, e = 2.095 x 105 J/kg, u = 0, v = 0.

Despite the very high temperatures in the shock layer, the gas is considered perfect with

-y = 1.4, R = 287 J/kg/K, Pr = 0.72,

and Sutherland's law is used for the coefficient of viscosity. The Navier-Stokes equations

are then integrated forward in time using high-order MUSCL interpolation and Euler time-

stepping with a CFL number of 0.5.

Figure 2 shows the flow field (pressure and Mach contours) at t = 13.6yis after the flow

has approached steady state. Discrete points from experimentally derived correlations [9]

are plotted on the pressure contours. Given that M = 60 is beyond the range of the data

used for the correlations, agreement is good. The largest deviations are near the outflow

boundary. Profiles of density and pressure along the line of cells adjacent to the x-axis are

shown in Fig. 3. The shock appears to be captured in 2 or 3 cells with no oscillation and the

density jumap is close to the ideal strong-shock value of 6. The pressure ratio from free-stream

to the stagnation point is -1621 which is very close to the ideal value of 4636 for M = 60 (see

eIg. [S Table Ii).

A similar calculation with l = 12 was reported in (1] and, for that condition, an Osher-

type solver (i.e. stages 1 and 3 only) failed to produce a solution. Also, a finite-difference

scheme using Roe-type flux-difference splitting required a rather large value for its entropy-

fix parameter in order to obtain a physically reasonable solution (J. White, NASA Langley

Research Centre, private communication). Also note that, while the M = 60 shock is very

strong, the high temperature in the region behind the shock enhances the viscous dissipation

and may result in a smoother solution than seen at lower Mach numbers.

3.2 Flow Over a Sharp Cone

To illustrate the behaviour of the solver in the presence of strong viscous effects, we show

the computed results for 11 8 flow over a sharp 70 cone. The axis of the cone is aligned

with the free stream.
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Two cases are considered in which the cone flow domain is discretized as a set of 100 x 60

cells and 100 x 90 cells. Free-stream conditions of

p = 1.0809 x 10- 2 kg/rn3 , P = 165.51 Pa, e = 3.8281 X 104 J/kg,

T= 53.35 K, u, = 1164.0 m/s, v = 0, M=oina= 7.95

are applied to the left and upper boundaries while the outflow boundary conditions are

obtained by extrapolation and the cone surface is modelled as a no-slip, adiabatic boundary.

To match the experinental conditions in [10], the gas was considered to be a perfect gas

with

1.4, 1? = 287 J/kg/K, Pr = 0.7,

and viscosity was obtained from the Sutherland expression

p = .61 X 1- 6 T 3/2 P~

T + 110.33

Based on free-stream conditions and the length of the cone, the Reynolds is approximately

3.3 x 10' . The initial state of the flow in the domain is

p= 1.0809 x 10-2 kg/rn3 , P= 165.51 Pa, e =3.8281 x 104 J/kg, u =0, v = 0.

The Navier-Stokes equations are then integrated forward in time using high-order MUSCL

interpolation and Euler time-stepping with a CFL number of 0.5.
F'igure 4 shows the flow field (pressure and density contours) t = 22ms after the flow

has approached steady state. The pressure field is almost conically symmetric, as per the

inviscid solution of Taylor and Macoll [11] (see also [12] Ch. 10) and the shock angle is

still approximately the inviscid value of 10.5' ([8], Chart 4). The shock, however, is slightly

cu,'ved near the apex of the cone. Boundary layer profiles of velocity and temperature at

x' = 1.Om are shown in Fig. 5 for both the present finite-volume solutions and a boundary-

laver solutionl15 uig edge conditions of

p = 2.011 ,/ 10-' ky/n13 , P, = 416.7 Pa, u: = 1148.6 m/s, T, = 71.04 K.

There is good agreelinit between the present finite-volume solutions and the spectrally-

accurate solution [131, especially near the cone surface. Although the outer region of the

boundary layer is llll(lerresolve(l, (even for the 100 x 90 mesh) the finite-volume solutions

appear to be convergilig to the spectral solution.
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if (u* > 0) then

The contact-discontinuity has moved to the right
and the interface state is determined from the
L and L* states.

if (P* > PL) then
The left-moving wave is a shock.
if (WSL > 0) then

All waves have moved to the right.
Interface state is equal to L.

else
Interface state is equal to L*.

endif
else

The left-moving wave is a rarefaction.
if (UL - aL > 0) then

All waves have moved to the right.
Interface state is equal to L.

elseif (ul - at > 0) then
The rarefaction straddles the interface.
Interpolate the interface state from
states L and L*.

else
The entire rarefaction moved to the
left of the interfact.
Interface state is equal to P.

endif
endif

else

The contact discontinuity has moved to the left
and the interface state is determined from the
R and R" states in a similar manner...

endif

Figure 1: Interpolation logic for the Riemann solver.
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Figure 2: NI 60 flow over a ,ipbere wvith a tangency boundary condition: (a) pressure
contours; (b) Mach number contours. "+" denotes the experimental correlation.
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Figure 4: Flow over a T3 cone with an adiabatic boundary layer: (a) pressure contours; (b)
density contours.
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Figure 5: Comparison of the present finite-volume solution with a spectral solution at 1.Om

from the cone apex: (a) tangential velocity; (b) temperature. Solid line represents spectral
solution, Q denotes 100 x 60 mesh, A denotes 100 x 90 mesh.
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